Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
  • See more
  • '); var ntfc_preview = ''; $.post('/api/v1/get_notifications', function(r) { var ntfc_read_pending = 0; var ntfc_pending = 0; $.each(r.notifications.pending, function(index, ntfc_object) { ntfc_read_pending++; ntfc_pending++; if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } else { $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } if (ntfc_read_pending == 0) { $('.notification-block .dropdown-menu').html('
  • You don\'t have any notifications
  • See more
  • '); $('.notification-count').hide(); } data = {'nid' : '', 'ntid' : 1}; $.post('/api/v1/notification_action', data, function(r) { if (r.request == 'OK') { $('.notification-count').hide(); } }); }, "json"); }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); var search_attr = $(this).attr('rel').split(','); var p = search_attr[1]; var tf = search_attr[0]; window.location = '/search?tf='+tf+'&jc='+jc+'&keywords='+$(this).html()+'&s='+$('#sort_order').val()+'&p='+p; } }, '.search-name'); $( "#keywords_main, #keywords_mobile" ).focus(function(e) { show_saved_searches(e, $(this)); }); $(window).resize(function () { if ($('.search-save-box').is(':visible')) { if ($('#keywords_main').is(':visible')) var left_search_save = $('#keywords_main').offset().left; if ($('#keywords_mobile').is(':visible')) var left_search_save = $('#keywords_mobile').offset().left; $('.search-save-box').css('left',left_search_save); } }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); delete_saved_search($(this)); } }, '.search-name-close'); $('.search-save-box, #keywords_main, #keywords_mobile').click(function(e) { e.stopPropagation(); }); $(document).click(function(e) { $('.search-save-box').hide(); }); $( "#keywords_main, #keywords_mobile" ).autocomplete({ source: function( request, response ) { // data contains the JSON object textStatus contains the status: success, error, etc $.post('/api/v1/searches', {'key' : request.term}, function(data, textStatus) { response(data); }, "json") }, select: function (event, ui) { var reportname = ui.item.value; var thelinks = '/search?tf='+$('#time_frame').val()+'&jc='+jc+'&keywords='+reportname+'&s='+$('#sort_order').val()+'&p='+$('#people_cluster').val(); } }); $('.search-go').click(function(e) { e.preventDefault(); window.location = get_search_url(); }); $('.logout').click(function(e) { e.preventDefault(); }); $('.header_keywords, .home_page_keywords').on('keydown', function(e) { if (e.keyCode == 13) { window.location = get_search_url(); } $('.search-save-box').hide(); }); $('.seemore').click(function(e){ e.stopImmediatePropagation(); }); });
    Sep 04, 2015
    BioMed Research International
    Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. Method. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields) model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Results. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.
      
    Add Public PDF
      
      
    Upload my PDF
      

    Downloading PDF to your library...

    ADD A TAG      64 chars max

      Make private

    APPLIED TAGS

    Uploading PDF...

    PDF uploading

    Delete tag:

    The link you entered does not seem to be valid

    Please make sure the link points to nature.com contains a valid shared_access_token