Article added to library!
x
Pubchase is a service of protocols.io - free, open access, crowdsourced protocols repository. Explore protocols.
Sign in
Reset password
or connect with
Facebook
By signing in you are agreeing to our
Terms Of Service and Privacy Policy
  • See more
  • '); var ntfc_preview = ''; $.post('/api/v1/get_notifications', function(r) { var ntfc_read_pending = 0; var ntfc_pending = 0; $.each(r.notifications.pending, function(index, ntfc_object) { ntfc_read_pending++; ntfc_pending++; if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) if (ntfc_read_pending
    ' + ntfc_object.full_name +'' + ntfc_object.time + '
    ' + ntfc_object.description +'
    '; }) $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } else { $('.notification-block .dropdown-menu').html(ntfc_preview); $('.notification-block .dropdown-menu').append('
  • See more
  • '); if (ntfc_pending > 0) { $('.notification-count').text(ntfc_pending).show(); } else { $('.notification-count').hide(); } } if (ntfc_read_pending == 0) { $('.notification-block .dropdown-menu').html('
  • You don\'t have any notifications
  • See more
  • '); $('.notification-count').hide(); } data = {'nid' : '', 'ntid' : 1}; $.post('/api/v1/notification_action', data, function(r) { if (r.request == 'OK') { $('.notification-count').hide(); } }); }, "json"); }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); var search_attr = $(this).attr('rel').split(','); var p = search_attr[1]; var tf = search_attr[0]; window.location = '/search?tf='+tf+'&jc='+jc+'&keywords='+$(this).html()+'&s='+$('#sort_order').val()+'&p='+p; } }, '.search-name'); $( "#keywords_main, #keywords_mobile" ).focus(function(e) { show_saved_searches(e, $(this)); }); $(window).resize(function () { if ($('.search-save-box').is(':visible')) { if ($('#keywords_main').is(':visible')) var left_search_save = $('#keywords_main').offset().left; if ($('#keywords_mobile').is(':visible')) var left_search_save = $('#keywords_mobile').offset().left; $('.search-save-box').css('left',left_search_save); } }); $('.search-save-box').on({ click : function(e) { e.preventDefault(); delete_saved_search($(this)); } }, '.search-name-close'); $('.search-save-box, #keywords_main, #keywords_mobile').click(function(e) { e.stopPropagation(); }); $(document).click(function(e) { $('.search-save-box').hide(); }); $( "#keywords_main, #keywords_mobile" ).autocomplete({ source: function( request, response ) { // data contains the JSON object textStatus contains the status: success, error, etc $.post('/api/v1/searches', {'key' : request.term}, function(data, textStatus) { response(data); }, "json") }, select: function (event, ui) { var reportname = ui.item.value; var thelinks = '/search?tf='+$('#time_frame').val()+'&jc='+jc+'&keywords='+reportname+'&s='+$('#sort_order').val()+'&p='+$('#people_cluster').val(); } }); $('.search-go').click(function(e) { e.preventDefault(); window.location = get_search_url(); }); $('.logout').click(function(e) { e.preventDefault(); }); $('.header_keywords, .home_page_keywords').on('keydown', function(e) { if (e.keyCode == 13) { window.location = get_search_url(); } $('.search-save-box').hide(); }); $('.seemore').click(function(e){ e.stopImmediatePropagation(); }); });
    Sep 10, 2015
    IEEE Transactions On Pattern Analysis And Machine Intelligence
    Use of higher order clique potentials in MRF-MAP problems has been limited primarily because of the inefficiencies of the existing algorithmic schemes. We propose a new combinatorial algorithm for computing optimal solutions to 2 label MRF-MAP problems with higher order clique potentials. The algorithm runs in time O(2(k)n(3)) in the worst case (k is size of clique and n is the number of pixels). A special gadget is introduced to model flows in a higher order clique and a technique for building a flow graph is specified. Based on the primal dual structure of the optimization problem, the notions of the capacity of an edge and a cut are generalized to define a flow problem. We show that in this flow graph, when the clique potentials are submodular, the max flow is equal to the min cut, which also is the optimal solution to the problem. We show experimentally that our algorithm provides significantly better solutions in practice and is hundreds of times faster than solution schemes like Dual Decomposition [1], TRWS [2] and Reduction [3], [4], [5]. The framework represents a significant advance in handling higher order problems making optimal inference practical for medium sized cliques.
      
    Add Public PDF
      
      
    Upload my PDF
      

    Downloading PDF to your library...

    ADD A TAG      64 chars max

      Make private

    APPLIED TAGS

    Uploading PDF...

    PDF uploading

    Delete tag:

    The link you entered does not seem to be valid

    Please make sure the link points to nature.com contains a valid shared_access_token